

CS103
FALL 2025

Lecture 21: Turing Machines

Part 2 of 3

Outline for Today

- ***The Church-Turing Thesis***
 - Just how powerful are TMs?
- ***What Does it Mean to Solve a Problem?***
 - It's more subtle than it looks.
- ***Recognizers and Deciders***
 - Two modes of problem-solving.

Recap from Last Time

Turing Machines

- A **Turing machine** is a program that controls a tape head as it moves around an infinite tape.
- There are six commands:
 - **Move** *direction*
 - **Write** *symbol*
 - **Goto** *label*
 - **Return** *boolean*
 - **If** *symbol command*
 - **If Not** *symbol command*
- Despite their limited vocabulary, TMs are surprisingly powerful.

What Can We Do With a TM?

- Last time, we saw TMs that
 - check if a string has the form $a^n b^n$,
 - check if a string has the same number of **a**'s and **b**'s, and
 - sort a string of **a**'s and **b**'s.
- Here's a list of some other things TMs can do; we'll give you these TMs with the starter files for PS8 this week.
 - Check if a number is a Fibonacci number.
 - Convert the number n into a string of n **a**'s.
 - Check if a string is a *tautonym* (the same string repeated twice).
 - So much more!
- This hints at the idea that TMs might be more powerful than they look.

New Stuff!

Main Questions for Today:

Just how powerful are Turing machines?

What problems can you solve with a computer?

Real and “Ideal” Computers

- A real computer has finite memory: finite disk space, finite RAM, etc.
- But as computers get more powerful, the amount of memory available keeps increasing.
 - Compare our first PCs to your laptops!
- An ***idealized computer*** is a computer with unlimited RAM and disk space.
- It functions just like a regular computer, but never runs out of memory.

Theorem: Turing machines are equal in power to idealized computers.

More specifically: any computation that can be done on a TM can be done on an idealized computer and vice-versa.

Key Idea: Two models of computation are equally powerful if they can simulate each other.

Simulating a TM

- The individual commands in a TM are simple and perform only basic operations:

Move Write Goto Return If

- The memory for a TM can be thought of as a string with some number keeping track of the current index.
- To simulate a TM, we need to
 - see which line of the program we're on,
 - determine what command it is, and
 - simulate that single command.
- **Claim:** This is reasonably straightforward to do on an idealized computer.
 - My “core” logic for the TM simulator is under fifty lines of code, including comments.

Simulating a TM

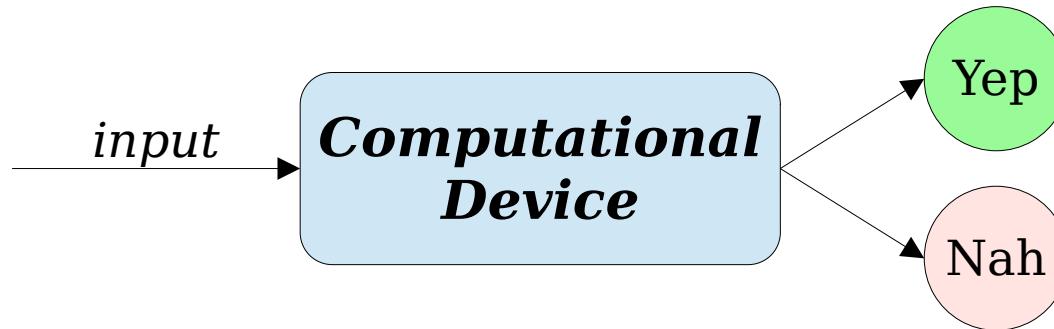
- Because a computer can simulate each individual TM instruction, an idealized computer can do anything a TM can do.
- ***Key Ideas:***
 - Even the most complicated TM is made out of individual instructions.
 - If we can simulate those instructions, we can simulate an arbitrarily complicated TM.

Simulating a Computer

- Programming languages provide a set of simple constructs.
 - Think things like variables, arrays, loops, functions, classes, etc.
- You, the programmer, then combine these basic constructs together to assemble larger programs.
- **Key Idea:** A TM is powerful enough to simulate each of these individual pieces. It's therefore powerful enough to simulate anything a real computer can do.

A Leap of Faith

- **Claim:** A TM is powerful enough to simulate any computer program that gets an input, processes that input, then returns some result.



- The resulting TM might be colossal, slow, or both, but it would still faithfully simulate the computer.
- We're going to take this as an article of faith in CS103. If you curious for more details, come talk to me after class.

Can a TM Work With...

“cat pictures?”

Sure! A picture is just a 2D array of colors, and a color can be represented as a series of numbers.

Can a TM Work With...

~~“cat pictures?”~~

“cat videos?”

If you think about it, a video is just a series of pictures!

Can a TM Work With...

“music?”

Sure! Music is encoded as a compressed waveform. That's just a list of numbers.

“Generative AI?”

Sure! That's just applying a bunch of matrices and nonlinear functions to some input.

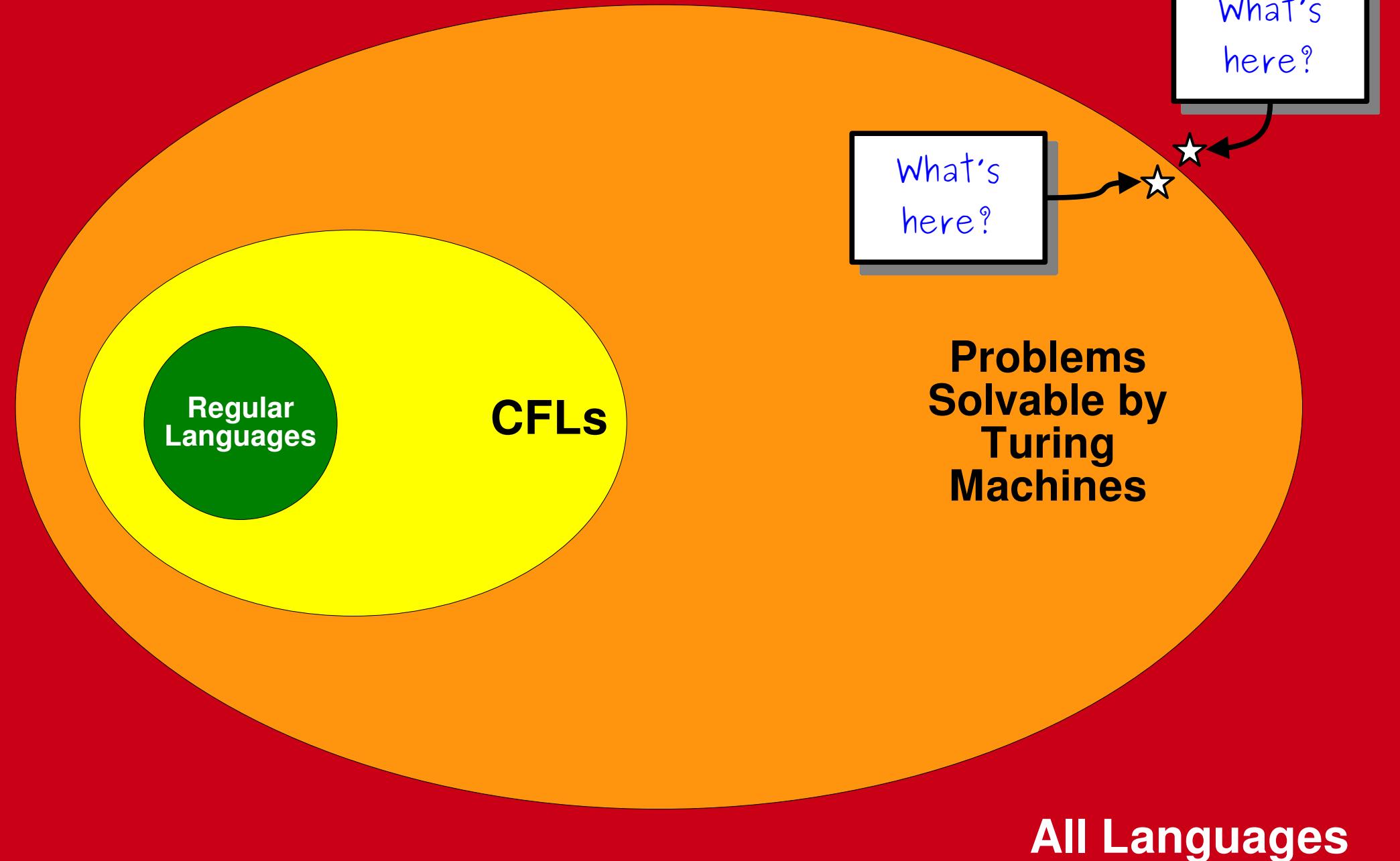
Just how powerful ***are*** Turing machines?

The ***Church-Turing Thesis*** claims that

***every feasible method of computation
is either equivalent to or weaker than
a Turing machine.***

“This is not a theorem – it is a falsifiable scientific hypothesis. And it has been thoroughly tested!”

- Ryan Williams



Time-Out for Announcements!

Problem Set 8

- Problem Set Seven was due today at 1:00PM.
 - You can use a late day to extend the deadline to 1:00PM on Saturday.
- Problem Set Eight goes out today. It's due next ***Sunday*** at 1:00PM, but is designed so that it can be feasibly completed by next Friday.
 - Construct context-free grammars and explore their expressive power.
 - Dive deeper into the structure of languages and functions between languages.
 - Tinker with TMs and what it's like to build all computation from smaller pieces.
- You know the drill: come talk to us if you have any questions, and let us know what we can do to help out.

Back to CS103!

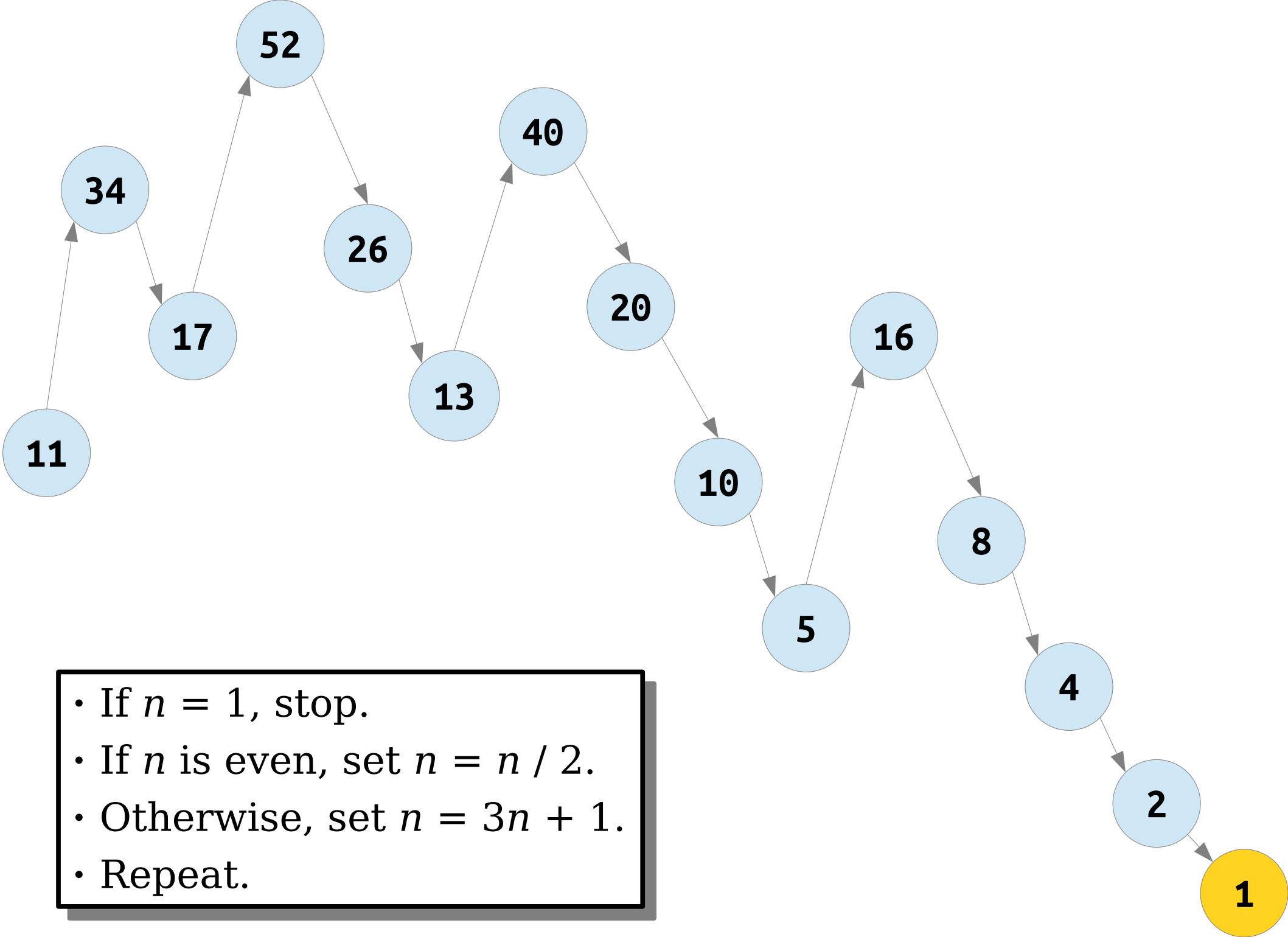
Decidability and Recognizability

What problems can we **solve** with a computer?

What does it
mean to "solve"
a problem?

The Hailstone Sequence

- Consider the following procedure, starting with some $n \in \mathbb{N}$, where $n > 0$:
 - If $n = 1$, you are done.
 - If n is even, set $n = n / 2$.
 - Otherwise, set $n = 3n + 1$.
 - Repeat.
- **Question:** Given a natural number $n > 0$, does this process terminate?



The Hailstone Turing Machine

- Let $\Sigma = \{\mathbf{a}\}$ and consider the language $L = \{ \mathbf{a}^n \mid n > 0 \text{ and the hailstone sequence terminates for } n \}$.
- We can build a TM for L as follows:
 - If the input is ϵ , reject.
 - While the string is not \mathbf{a} :
 - If the input has even length, halve the length of the string.
 - If the input has odd length, triple the length of the string and append a \mathbf{a} .
 - Accept.

Does this Turing machine
always eventually stop running?

The Collatz Conjecture

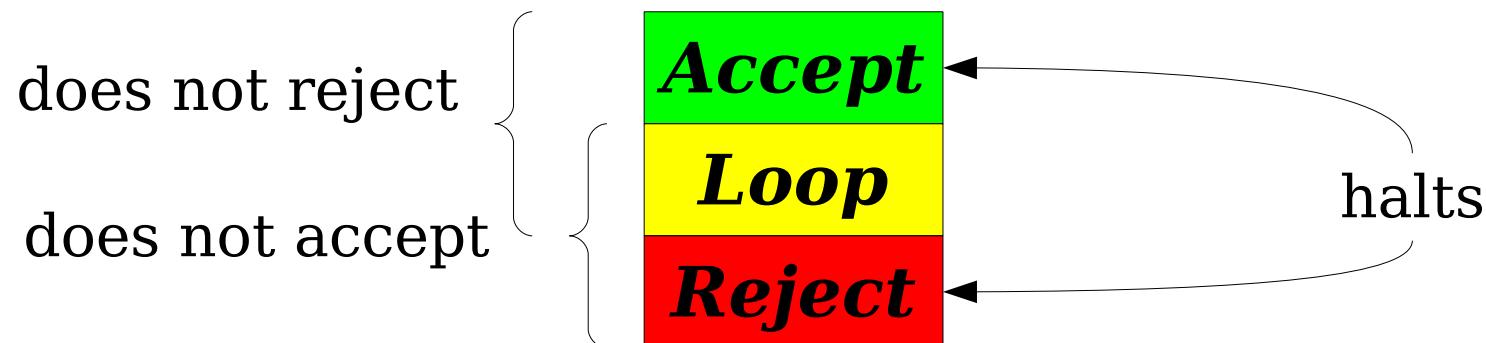
- It is *unknown* whether this process will terminate for all natural numbers.
 - No one knows whether this TM always terminates!
- The conjecture (unproven claim) that the hailstone sequence always terminates is called the **Collatz Conjecture**.
- Paul Erdős is reported to have said “mathematics may not be ready for such problems.”

An Important Observation

- Unlike finite automata, which automatically halt after all the input is read, TMs keep running until they explicitly return true or return false.
- As a result, it's possible for a TM to run forever without accepting or rejecting.
- What does “solving” a problem with a TM mean when a TM might run forever without giving an answer?

Very Important Terminology

- Let M be a Turing machine and w be a string.
- M **accepts** w if it returns true on w .
- M **rejects** w if it returns false on w .
- M **loops** on w (or **loops infinitely**) if when run on w it neither returns true nor returns false.
- M **does not accept w** if it either rejects w or loops on w .
- M **does not reject w** if it either accepts w or loops on w .
- M **halts on w** if it accepts w or rejects w .



Recognizers and Recognizability

- A TM M is a **recognizer** for a language L over Σ when
$$\forall w \in \Sigma^*. (w \in L \leftrightarrow M \text{ accepts } w).$$
- A language L is **recognizable** when there is a recognizer for L .
- If you are absolutely certain that $w \in L$, then running a recognizer for L on w will (eventually) confirm this.
 - Eventually, M will accept w .
- If you don't know whether $w \in L$, running M on w may never tell you anything.
 - M might loop on w – but you can't differentiate between “it'll accept if you wait longer” and “it will never come back with an answer.”
- Does this feel like “solving a problem” to you?

Recognizers and Recognizability

- Our hailstone TM M is a recognizer for

$$L = \{ \mathbf{a}^n \mid n > 0 \text{ and the hailstone sequence terminates for } n \}.$$

- Why?

- If the sequence terminates starting at n , then M accepts \mathbf{a}^n .
 - If the sequence doesn't terminate, then M loops on \mathbf{a}^n and thus doesn't accept \mathbf{a}^n .

- What does that mean?

- If you (somehow) know the sequence terminates for n , then M will eventually confirm this.
 - If you don't know, then M might not tell you anything.

Recognizers and Recognizability

- Surprising fact: until 2019, no one knew whether there were integers x , y , and z where
$$x^3 + y^3 + z^3 = 33.$$
- A heavily optimized computer search found this answer:

$$\begin{aligned}x &= 8,866,128,975,287,528 \\y &= -8,778,405,442,862,239 \\z &= -2,736,111,468,807,040\end{aligned}$$

- As of November 2025, no one knows whether there are integers x , y , and z where

$$x^3 + y^3 + z^3 = 114.$$

Recognizers and Recognizability

- Consider the language

$$L = \{ \mathbf{a}^n \mid \exists x \in \mathbb{Z}. \exists y \in \mathbb{Z}. \exists z \in \mathbb{Z}. x^3 + y^3 + z^3 = n \}$$

- Here's pseudocode for a recognizer to see whether such a triple exists:

```
for max = 0, 1, 2, ...
  for x from -max to +max:
    for y from -max to +max:
      for z from -max to +max:
        if x3 + y3 + z3 = n: return true
```

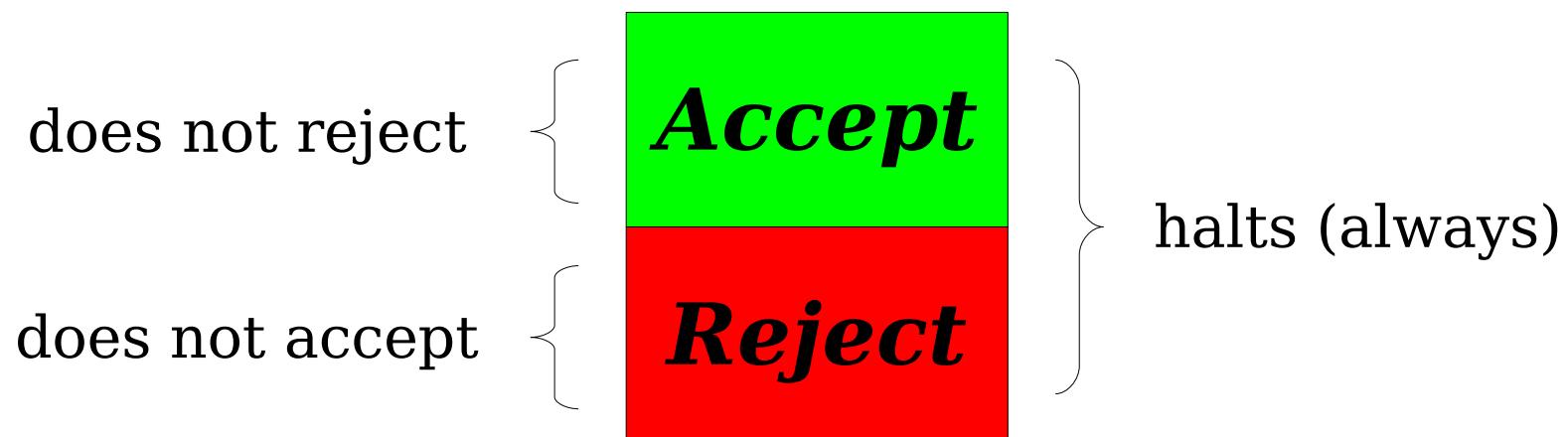
- If you somehow know there was a triple x , y , and z where $x^3 + y^3 + z^3 = n$, running this program will (eventually) convince you of this.
- If you aren't sure whether a triple exists, this recognizer might not be useful to you.

Recognizers and Recognizability

- The class **RE** consists of all recognizable languages.
- Formally speaking:
$$\mathbf{RE} = \{ L \mid L \text{ is a language and there's a recognizer for } L \}$$
- You can think of **RE** as “all problems with yes/no answers where “yes” answers can be confirmed by a computer.”
 - Given a recognizable language L and a string $w \in L$, running a recognizer for L on w will eventually confirm $w \in L$.
 - The recognizer will never have a “false positive” of saying that a string is in L when it isn’t.
- This is a “weak” notion of solving a problem.
- Is there a “stronger” one?

Deciders and Decidability

- Some (***but not all!***) TMs halt on all inputs.
- Given a TM M that always halts, the statement “ M does not accept w ” means “ M rejects w .”



Deciders and Decidability

- A TM M is a **decider** for a language L over Σ when

$\forall w \in \Sigma^*. M \text{ halts on } w.$

$\forall w \in \Sigma^*. (w \in L \leftrightarrow M \text{ accepts } w)$

- A language L is **decidable** when there is a decider for it.
- Equivalently:
 - A decider M for a language L accepts all strings in L and rejects all strings not in L .
 - A decider M for a language L is a recognizer for L that halts on all inputs.
- Intuitively, if you don't know whether $w \in L$, running M on w will "create new knowledge" by telling you the answer.
- This is a "strong" notion of "solving a problem."

Deciders and Decidability

- The class **R** consists of all decidable languages.
- Formally speaking:
$$\mathbf{R} = \{ L \mid L \text{ is a language and there's a decider for } L \}$$
- You can think of **R** as “all problems with yes/no answers that can be fully solved by computers.”
 - Given a decidable language, run a decider for L and see what happens.
 - Think of this as “knowledge creation” – if you don’t know whether a string is in L , running the decider will, given enough time, tell you.
- The class **R** contains all the regular languages, all the context-free languages, most of CS161, etc.
- This is a “strong” notion of solving a problem.

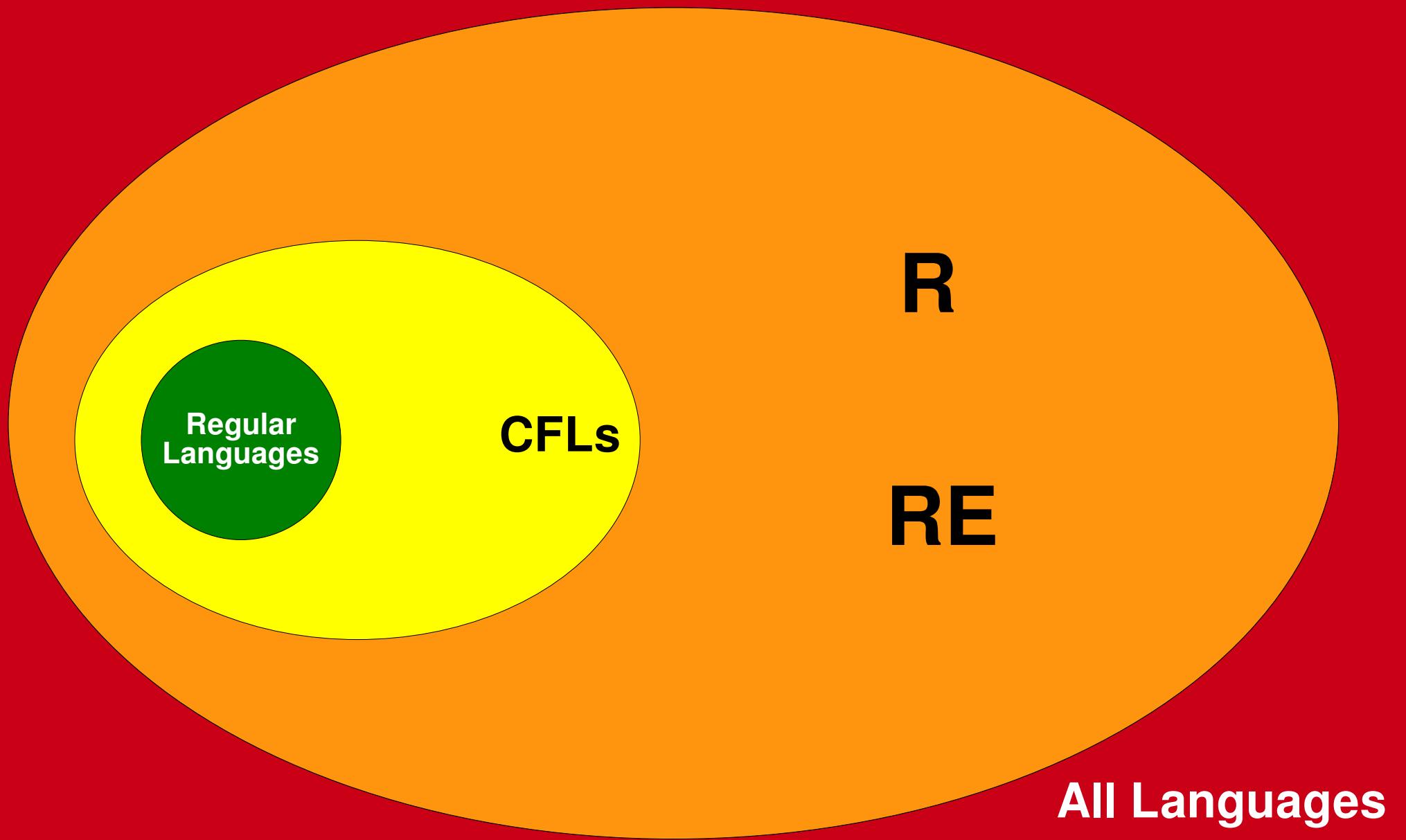
R and **RE** Languages

- Every decider for L is also a recognizer for L .
- This means that $\mathbf{R} \subseteq \mathbf{RE}$.
- Hugely important theoretical question:

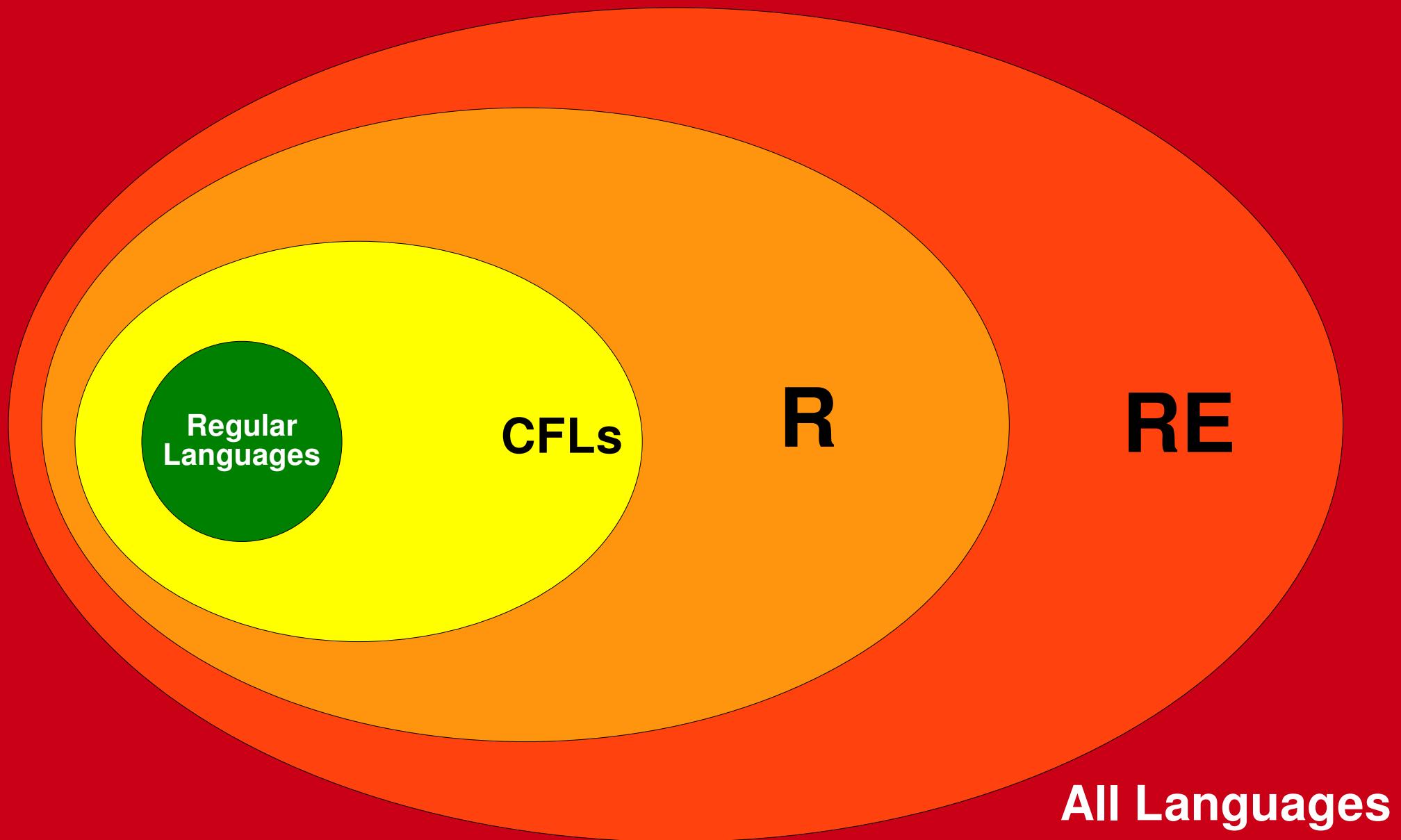
$$\mathbf{R} \stackrel{?}{=} \mathbf{RE}$$

- That is, if you can just confirm “yes” answers to a problem, can you necessarily *solve* that problem?

Which Picture is Correct?



Which Picture is Correct?



Unanswered Questions

- Why exactly is **RE** an interesting class of problems?
- What does the $\mathbf{R} \stackrel{?}{=} \mathbf{RE}$ question mean?
- Is $\mathbf{R} = \mathbf{RE}$?
- What lies beyond **R** and **RE**?
- Find out next week!

Next Time

- *Emergent Properties*
 - Larger phenomena made of smaller parts.
- *Universal Machines*
 - A single, “most powerful” computer.
- *Self-Reference*
 - Programs that ask questions about themselves.