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Outline for Today
● The Church-Turing Thesis

– Just how powerful are TMs?
● What Does it Mean to Solve a 

Problem?
– It’s more subtle than it looks.

● Recognizers and Deciders
– Two modes of problem-solving.



  

Recap from Last Time



  

Turing Machines
● A Turing machine is a program that controls a 

tape head as it moves around an infinite tape.
● There are six commands:

– Move direction
– Write symbol
– Goto label
– Return boolean
– If symbol command
– If Not symbol command

● Despite their limited vocabulary, TMs are 
surprisingly powerful.



  

What Can We Do With a TM?
● Last time, we saw TMs that

– check if a string has the form anbn,
– check if a string has the same number of a’s and b’s, and
– sort a string of a’s and b’s.

● Here’s a list of some other things TMs can do; we’ll give 
you these TMs with the starter files for PS8 this week.
– Check if a number is a Fibonacci number.
– Convert the number n into a string of n a’s.
– Check if a string is a tautonym (the same string repeated twice).
– So much more!

● This hints at the idea that TMs might be more powerful 
than they look.



  

New Stuff!



  

Main Questions for Today:

Just how powerful are Turing machines?

What problems can you solve with a computer?



  

Real and “Ideal” Computers
● A real computer has finite memory: finite disk 

space, finite RAM, etc.
● But as computers get more powerful, the 

amount of memory available keeps increasing.
– Compare our first PCs to your laptops!

● An idealized computer is a computer with 
unlimited RAM and disk space.

● It functions just like a regular computer, but 
never runs out of memory.



  

Theorem: Turing machines are equal in 
power to idealized computers.

 

More specifically: any computation that 
can be done on a TM can be done on an 

idealized computer and vice-versa.



  

Key Idea: Two models of computation
are equally powerful if they can

simulate each other.



  

Simulating a TM
● The individual commands in a TM are simple and 

perform only basic operations:
Move   Write   Goto   Return   If 

● The memory for a TM can be thought of as a string 
with some number keeping track of the current index.

● To simulate a TM, we need to
– see which line of the program we’re on,
– determine what command it is, and
– simulate that single command.

● Claim: This is reasonably straightforward to do on an 
idealized computer.
– My “core” logic for the TM simulator is under fifty lines of 

code, including comments.



  

Simulating a TM
● Because a computer can simulate each 

individual TM instruction, an idealized 
computer can do anything a TM can do.

● Key Ideas: 
– Even the most complicated TM is made out 

of individual instructions.
– If we can simulate those instructions, we 

can simulate an arbitrarily complicated TM.



  

Simulating a Computer
● Programming languages provide a set of simple 

constructs.
– Think things like variables, arrays, loops, functions, 

classes, etc.
● You, the programmer, then combine these basic 

constructs together to assemble larger 
programs.

● Key Idea: A TM is powerful enough to simulate 
each of these individual pieces. It’s therefore 
powerful enough to simulate anything a real 
computer can do.



  

A Leap of Faith
● Claim: A TM is powerful enough to simulate any 

computer program that gets an input, processes 
that input, then returns some result. 
 

● The resulting TM might be colossal, slow, or both, 
but it would still faithfully simulate the computer.

● We're going to take this as an article of faith in 
CS103. If you curious for more details, come talk 
to me after class.

Computational
Device

Yep

Nah

input



  

Can a TM Work With…

Sure! A picture is 
just a 2D array of 
colors, and a color 
can be represented 

as a series of 
numbers.

“cat pictures?”



  

Can a TM Work With…

If you think about 
it, a video is just a 
series of pictures!

“cat videos?”
“cat pictures?”



  

Can a TM Work With…

Sure! Music is encoded as a 
compressed waveform. That’s 

just a list of numbers.

“music?”

Sure! That’s just applying a 
bunch of matrices and 

nonlinear functions to some 
input.

“Generative AI?”



  

Just how powerful are Turing machines?



  

The Church-Turing Thesis claims that

every feasible method of computation
is either equivalent to or weaker than

a Turing machine.

“This is not a theorem – it is a
falsifiable scientific hypothesis.
And it has been thoroughly
tested!”

- Ryan Williams



  

Regular
Languages CFLs

All Languages

Problems 
Solvable by 

Turing 
Machines

What’s
here?

What’s
here?



  

Time-Out for Announcements!



  

Problem Set 8
● Problem Set Seven was due today at 1:00PM.

– You can use a late day to extend the deadline to 1:00PM on 
Saturday.

● Problem Set Eight goes out today. It’s due next Sunday at 
1:00PM, but is designed so that it can be feasibly 
completed by next Friday.
– Construct context-free grammars and explore their expressive 

power.
– Dive deeper into the structure of languages and functions 

between languages.
– Tinker with TMs and what it’s like to build all computation from 

smaller pieces.
● You know the drill: come talk to us if you have any 

questions, and let us know what we can do to help out.



  

Back to CS103!



  

Decidability and Recognizability



  

What problems can we solve with a computer?

What does it 
mean to “solve” 
a problem?



  

The Hailstone Sequence
● Consider the following procedure, 

starting with some n ∈ ℕ, where n > 0:
– If n = 1, you are done.
– If n is even, set n = n / 2.
– Otherwise, set n = 3n + 1.
– Repeat.

● Question: Given a natural number n > 0, 
does this process terminate?
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· If n = 1, stop.
 

· If n is even, set n = n / 2.
 

· Otherwise, set n = 3n + 1.
 

· Repeat.



  

The Hailstone Turing Machine
● Let Σ = {a} and consider the language

   L = { an | n > 0 and the hailstone
                   sequence terminates for n }.

● We can build a TM for L as follows:
If the input is ε, reject.
While the string is not a:

If the input has even length, halve the length of 
the string.
If the input has odd length, triple the length of 
the string and append a a.

Accept.



  

Does this Turing machine
always eventually stop running?



  

The Collatz Conjecture
● It is unknown whether this process will 

terminate for all natural numbers.
– No one knows whether this TM always 

terminates!
● The conjecture (unproven claim) that the 

hailstone sequence always terminates is 
called the Collatz Conjecture.

● Paul Erdős is reported to have said 
“mathematics may not be ready for such 
problems.”



  

An Important Observation
● Unlike finite automata, which 

automatically halt after all the input is 
read, TMs keep running until they 
explicitly return true or return false.

● As a result, it’s possible for a TM to run 
forever without accepting or rejecting.

● What does “solving” a problem with a TM 
mean when a TM might run forever 
without giving an answer?



  

Very Important Terminology
● Let M be a Turing machine and w be a string.
● M accepts w if it returns true on w.
● M rejects w if it returns false on w.
● M loops on w (or loops infinitely) if when run on w it neither 

returns true nor returns false.
● M does not accept w if it either rejects w or loops on w.
● M does not reject w w if it either accepts w or loops on w.
● M halts on w if it accepts w or rejects w.

Accept
Loop

Reject
does not accept                                     

does not reject                               

halts



  

● A TM M is a recognizer for a language L over Σ when
∀w ∈ Σ*. (w ∈ L  ↔  M accepts w).

● A language L is recognizable when there is a 
recognizer for L.

● If you are absolutely certain that w ∈ L, then running a 
recognizer for L on w will (eventually) confirm this.
– Eventually, M will accept w.

● If you don’t know whether w ∈ L, running M on w may 
never tell you anything.
– M might loop on w – but you can’t differentiate between “it’ll 

accept if you wait longer” and “it will never come back with 
an answer.”

● Does this feel like “solving a problem” to you?

Recognizers and Recognizability



  

● Our hailstone TM M is a recognizer for
    L = { an | n > 0 and the hailstone
                             sequence terminates for n }.

● Why?
– If the sequence terminates starting at n, then M 

accepts an.
– If the sequence doesn’t terminate, then M loops on an 

and thus doesn’t accept an.
● What does that mean?

– If you (somehow) know the sequence terminates for n, 
then M will eventually confirm this.

– If you don’t know, then M might not tell you anything.

Recognizers and Recognizability



  

● Surprising fact: until 2019, no one knew 
whether there were integers x, y, and z where

x3 + y3 + z3 = 33.
● A heavily optimized computer search found this 

answer:
x = 8,866,128,975,287,528
y = -8,778,405,442,862,239
z = -2,736,111,468,807,040

● As of November 2025, no one knows whether 
there are integers x, y, and z where

x3 + y3 + z3 = 114.

Recognizers and Recognizability



  

● Consider the language
L = { an | ∃x ∈ ℤ. ∃y ∈ ℤ. ∃z ∈ ℤ. x3 + y3 + z3 = n }

● Here’s pseudocode for a recognizer to see whether such 
a triple exists:

for max = 0, 1, 2, …                  
  for x from -max to +max:            
    for y from -max to +max:          
      for z from -max to +max:        
        if x3 + y3 + z3 = n: return true

● If you somehow know there was a triple x, y, and z 
where x3 + y3 + z3 = n, running this program will 
(eventually) convince you of this.

● If you aren’t sure whether a triple exists, this recognizer 
might not be useful to you.

Recognizers and Recognizability



  

Recognizers and Recognizability
● The class RE consists of all recognizable languages.
● Formally speaking:

RE = { L | L is a language and there’s a recognizer for L }
● You can think of RE as “all problems with yes/no 

answers where “yes” answers can be confirmed by a 
computer.”
– Given a recognizable language L and a string w ∈ L, running a 

recognizer for L on w will eventually confirm w ∈ L.
– The recognizer will never have a “false positive” of saying 

that a string is in L when it isn’t.
● This is a “weak” notion of solving a problem.
● Is there a “stronger” one?



  

Deciders and Decidability
● Some (but not all!) TMs halt on all inputs.
● Given a TM M that always halts, the statement 

“M does not accept w” means “M rejects w.”

Accept

Reject
                          halts (always)

does not accept                                   

does not reject                                   



  

Deciders and Decidability
● A TM M is a decider for a language L over Σ when

∀w ∈ Σ*. M halts on w.
∀w ∈ Σ*. (w ∈ L   ↔   M accepts w)

● A language L is decidable when there is a decider for it.
● Equivalently:

– A decider M for a language L accepts all strings in L and rejects 
all strings not in L.

– A decider M for a language L is a recognizer for L that halts on 
all inputs.

● Intuitively, if you don’t know whether w ∈ L, running M on w 
will “create new knowledge” by telling you the answer.

● This is a “strong” notion of “solving a problem.”



  

Deciders and Decidability
● The class R consists of all decidable languages.
● Formally speaking:

R = { L | L is a language and there’s a decider for L }
● You can think of R as “all problems with yes/no 

answers that can be fully solved by computers.”
– Given a decidable language, run a decider for L and see what 

happens.
– Think of this as “knowledge creation” – if you don’t know 

whether a string is in L, running the decider will, given 
enough time, tell you.

● The class R contains all the regular languages, all the 
context-free languages, most of CS161, etc.

● This is a “strong” notion of solving a problem.



  

R and RE Languages
● Every decider for L is also a recognizer for L.
● This means that R ⊆ RE.
● Hugely important theoretical question:

R ≟ RE
● That is, if you can just confirm “yes” answers to 

a problem, can you necessarily solve that 
problem?



  

Regular
Languages CFLs

All Languages

R

RE

Which Picture is Correct?



  

Regular
Languages CFLs

All Languages

R RE

Which Picture is Correct?



  

Unanswered Questions
● Why exactly is RE an interesting class of 

problems?
● What does the R  ≟ RE question mean?
● Is R = RE?
● What lies beyond R and RE?
● Find out next week!



  

Next Time
● Emergent Properties

– Larger phenomena made of smaller parts.
● Universal Machines

– A single, “most powerful” computer.
● Self-Reference

– Programs that ask questions about 
themselves.
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